SET - 2	2
---------	---

कोड नं. Code No.

31/2

Series				
रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 27 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-प्रस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 27 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

विज्ञान

SCIENCE

निर्धारित समय : 3 घंटे अधिकतम अंक : 80

Time allowed: 3 hours Maximum Marks: 80

31/2 1 [P.T.O.

सामान्य निर्देश:

- (i) इस प्रश्न-पत्र को **दो** भागों, भाग अ और भाग ब, में बाँटा गया है। आपको दोनों भागों के प्रश्नों के उत्तर लिखने हैं।
- (ii) सभी प्रश्न **अनिवार्य** हैं।
- (iii) आपको भाग अ और भाग ब के सभी प्रश्नों के उत्तर पृथक्-पृथक् भाग के आधार पर लिखने हैं।
- (iv) यहाँ भाग अ के **तीन** अंक के **तीन** प्रश्नों, **पाँच** अंक के **दो** प्रश्नों और भाग ब में **दो** अंक के **एक** प्रश्न में आंतरिक चयन दिया गया है।
- (v) भाग अ के प्रश्न संख्या 1 और 2 **एक-एक** अंक के प्रश्न हैं। इनके उत्तर **एक** शब्द अथवा **एक** वाक्य में दीजिए।
- (vi) भाग अ के प्रश्न संख्या 3 से 5 **दो-दो** अंकों के प्रश्न हैं। इनके उत्तर लगभग 30 शब्दों में देने हैं।
- (vii) भाग अ के प्रश्न संख्या 6 से 15 तीन-तीन अंकों के प्रश्न हैं। इनके उत्तर लगभग 50 शब्दों में देने हैं।
- (viii) भाग अ के प्रश्न संख्या 16 से 21 **पाँच-पाँच** अंकों के प्रश्न हैं। इनके उत्तर लगभग 70 शब्दों में देने हैं।
- (ix) भाग ब के प्रश्न संख्या 22 से 27 प्रयोगात्मक कौशल पर आधारित **दो-दो** अंकों के प्रश्न हैं। इनके उत्तर संक्षिप्त में देने हैं।

General Instructions:

- (i) The question paper comprises **two** Sections, A and B. You are to attempt both the sections.
- (ii) All questions are compulsory.
- (iii) All questions of Section A and Section B are to be attempted separately.
- (iv) There is an internal choice in **three** questions of **three** marks each, **two** questions of **five** marks each in Section A and in **one** question of **two** marks in Section B.
- (v) Question numbers 1 and 2 in Section A are **one**-mark questions. They are to be answered in **one** word or in **one** sentence.
- (vi) Question numbers 3 to 5 in Section A are **two**-marks questions. These are to be answered in about 30 words each.
- (vii) Question numbers 6 to 15 in Section A are three-marks questions. These are to be answered in about 50 words each.
- (viii) Question numbers **16** to **21** in Section A are **five**-marks questions. These are to be answered in about **70** words each.
- (ix) Question numbers 22 to 27 in Section B are based on practical skills. Each question is a **two**-marks question. These are to be answered in brief.

31/2

भाग - अ

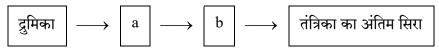
Section - A

जल विद्युत संयंत्र में होने वाले ऊर्जा-रूपान्तरण लिखिए। 1.

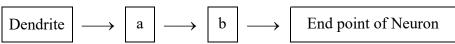
1

Write the energy conversion that takes place in a hydropower plant.

मेंडल के एक प्रयोग में बैंगनी रंग के पृष्पों वाले मटर के पौधों का संकरण सफेद फूलों वाले मटर के पौधों से 2. कराया गया । F1 संतति में क्या परिणाम प्राप्त होंगे ?


1

A Mendelian experiment consisted of breeding pea plants bearing violet flowers with pea plants bearing white flowers. What will be the result in F₁ progeny?


मानवों में पाए जाने वाले एक रस संवेदी ग्राही तथा एक घ्राणग्राही का नाम लिखिए। 3. (a)

2

नीचे दिए गए न्यूरॉन के प्रवाह आरेख, जिसमें सूचना विद्युत आवेग के रूप में गमन करती है, को (b) अपनी उत्तर पुस्तिका पर खींचकर इसमें a और b का नाम लिखिए।

- Name one gustatory receptor and one olfactory receptor present in human beings. (a)
- (b) Write a and b in the given flow chart of neuron through which information travels as an electrical impulse.

यदि किसी गोलीय दर्पण द्वारा उसके सामने रखें बिम्ब की किसी भी स्थिति के लिए सदैव ही बिम्ब का 4. सीधा और साइज़ में छोटा प्रतिबिम्ब बनता है, तो यह दर्पण किस प्रकार का है ? अपने उत्तर की पुष्टि के लिए नामांकित किरण आरेख खींचिए।

2

If the image formed by a spherical mirror for all positions of the object placed in front of it is always erect and diminished, what type of mirror is it? Draw a labelled ray diagram to support your answer.

[P.T.O.

31/2

5. कोई यौगिक 'X' आधिक्य सांद्र सल्फ्यूरिक अम्ल के साथ 443 K पर गर्म करने पर कोई असंतृप्त यौगिक 'Y' बनाता है । यौगिक 'X' सोडियम धातु से भी अभिक्रिया करता है जिसमें कोई रंगहीन गैस 'Z' निकलती है । 'X', 'Y' तथा 'Z' को पहचानिए । 'Y' उत्पन्न होने की रासायनिक अभिक्रिया का समीकरण भी लिखिए तथा इसमें सांद्र सल्फ्यूरिक अम्ल की भूमिका का उल्लेख भी कीजिए ।

A compound 'X' on heating with excess conc. sulphuric acid at 443 K gives an unsaturated compound 'Y'. 'X' also reacts with sodium metal to evolve a colourless gas 'Z'. Identify 'X', 'Y' and 'Z'. Write the equation of the chemical reaction of formation of 'Y' and also write the role of sulphuric acid in the reaction.

5. प्रकाश के अपवर्तन के नियम लिखिए। पद "िकसी माध्यम का निरपेक्ष अपवर्तनांक" की व्याख्या कीजिए और इस पद तथा निर्वात में प्रकाश की चाल के बीच के संबंध को दर्शाने के लिए व्यंजक लिखिए।

अथवा

किसी लेंस की क्षमता से क्या तात्पर्य है ? इसका SI मात्रक लिखिए। कोई छात्र 40 cm फोकस दूरी का लेंस उपयोग कर रहा है तथा कोई अन्य छात्र –20 cm फोकस दूरी का लेंस उपयोग कर रहा है। इन दोनों लेंसों की प्रकृति और क्षमता लिखिए।

State the laws of refraction of light. Explain the term 'absolute refractive index of a medium' and write an expression to relate it with the speed of light in vacuum.

OR

What is meant by power of a lens? Write its SI unit. A student uses a lens of focal length 40 cm and another of -20 cm. Write the nature and power of each lens.

7. अलैंगिक जनन और लैंगिक जनन के बीच एक अन्तर लिखिए । अलैंगिक जनन करने वाली अथवा लैंगिक जनन करने वाली स्पीशीज़ में से किसके द्वारा जिनत स्पीशीज़ की उत्तरजीविता के अपेक्षाकृत अधिक संयोग हो सकते हैं ? अपने उत्तर की पुष्टि के लिए कारण दीजिए ।

Write one main difference between asexual and sexual mode of reproduction. Which species is likely to have comparatively better chances of survival – the one reproducing asexually or the one reproducing sexually? Give reason to justify your answer.

31/2

3

2

8. यह दर्शाइए कि तीन प्रतिरोधकों, जिनमें प्रत्येक का प्रतिरोध 9 Ω है, को आप किस प्रकार संयोजित करेंगे कि संयोजन का तुल्य प्रतिरोध (i) 13.5 Ω , (ii) 6 Ω प्राप्त हो ?

3

अथवा

- (a) जूल का तापन नियम लिखिए।
- (b) दो विद्युत लैम्प जिनमें से एक का अनुमतांक 100 W; 220 V तथा दूसरे का 60 W; 220 V है, किसी विद्युत मेंस के साथ पार्श्वक्रम में संयोजित हैं। यदि विद्युत आपूर्ति की वोल्टता 220 V है, तो दोनों बल्बों द्वारा विद्युत मेंस से कितनी धारा ली जाती है ?

Show how would you join three resistors, each of resistance 9 Ω so that the equivalent resistance of the combination is (i) 13.5 Ω , (ii) 6 Ω ?

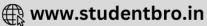
OR

- (a) Write Joule's law of heating.
- (b) Two lamps, one rated 100 W; 220 V, and the other 60 W; 220 V, are connected in parallel to electric mains supply. Find the current drawn by two bulbs from the line, if the supply voltage is 220 V.
- 9. निम्नलिखित अन्तःस्रावी ग्रंथियों द्वारा स्नावित हॉर्मोनों का नाम तथा प्रत्येक का एक प्रकार्य लिखिए।
 - (a) अव्दु ग्रंथि (b) पीयूष ग्रंथि (c) अग्न्याशय

Name the hormones secreted by the following endocrine glands and specify one function of each:

- (a) Thyroid (b) Pituitary (c) Pancreas
- 10. किसी परखनली में दानेदार जिंक के कुछ टुकडे लेकर उसमें 2 mL सोडियम हाइड्रॉक्साइड का विलयन डाला गया। परखनली की सामग्री को गर्म करने पर कोई गैस उत्सर्जित हुई जिसका परीक्षण करने से पूर्व उसे साबुन के विलयन से प्रवाहित किया गया जिसमें गैस के बुलबुले बने। होने वाली अभिक्रिया का समीकरण तथा इस गैस के संसूचन के लिए परीक्षण लिखिए। यदि यही धातु किसी प्रबल अम्ल के तनु विलयन से अभिक्रिया करे, तो जो गैस उत्सर्जित होगी उसका नाम लिखिए।

अथवा


पकौड़ों को स्वादिष्ट और खस्ता बनाने के लिए उपयोग किए जाने वाले किसी लवण का pH मान 14 है। इस लवण को पहचानिए तथा इसके निर्माण के लिए रासायनिक समीकरण लिखिए। इसके दो उपयोगों की सूची बनाइए।

2 mL of sodium hydroxide solution is added to a few pieces of granulated zinc metal taken in a test tube. When the contents are warmed, a gas evolves which is bubbled through a soap solution before testing. Write the equation of the chemical reaction involved and the test to detect the gas. Name the gas which will be evolved when the same metal reacts with dilute solution of a strong acid.

OR

The pH of a salt used to make tasty and crispy pakoras is 14. Identify the salt and write a chemical equation for its formation. List its two uses.

31/2 5 [P.T.O.

- (b) किसी ऐसे संतृप्त यौगिक का नाम और उसकी संरचना दीजिए जिसमें कार्बन परमाणु वलय के रूप में व्यवस्थित होते हैं। इस यौगिक में उपस्थित एकल आबन्धों की संख्या लिखिए।
- (a) Why are most carbon compounds poor conductors of electricity?
- (b) Write the name and structure of a saturated compound in which the carbon atoms are arranged in a ring. Give the number of single bonds present in this compound.
- 12. वियोजन (अपघटन) अभिक्रियाओं में अभिकारकों को तोड़ने के लिए या तो ऊष्मा अथवा प्रकाश अथवा विद्युत ऊर्जा की आवश्यकता होती है। प्रत्येक प्रकार की वियोजन अभिक्रिया, जिसमें ऊष्मा, प्रकाश और विद्युत ऊर्जा की आपूर्ति की जाती है, के लिए एक-एक रासायनिक समीकरण लिखिए।

Decomposition reactions require energy either in the form of heat or light or electricity for breaking down the reactants. Write one equation each for decomposition reactions where energy is supplied in the form of heat, light and electricity.

13. बांध क्या होता है ? हम बड़े बांध क्यों बनाना चाहते हैं ? बड़े बांधों का निर्माण करते समय किन तीन समस्याओं का ध्यान रखना चाहिए, ताकि स्थानीय लोगों में शांति बनी रहे, उनका उल्लेख कीजिए।
 3
 What is a dam? Why do we seek to build large dams? While building large dams,

which three main problems should particularly be addressed to maintain peace among local people? Mention them.

31/2

- 14. किसी विद्यालय के छात्रों ने प्रातःकालीन सभा में यह समाचार सुना कि दिल्ली में कूड़े का कोई पर्वत अचानक फट गया और कई गाड़ियाँ उस मलबे में दब गयीं। कुछ लोग भी जख्मी हो गए और हर ओर ट्रैफिक जाम हो गया। शिक्षक महोदय ने बौद्धिक सत्र में भी इसी विषय पर चर्चा की तथा छात्रों से कूड़े की समस्या का हल खोजने के लिए कहा। अन्ततः छात्रों ने दो बिन्दुओं का निष्कर्ष निकाला पहला यह है कि जो कूड़ा हम उत्पन्न करते हैं उसका प्रबन्धन हम स्वयं करें, तथा दूसरा यह कि निजी स्तर पर हम कम कूड़ा उत्पन्न करें।
 - (a) जो कूड़ा हम उत्पन्न करते हैं उसके प्रबन्धन के दो उपाय सुझाइए।
 - (b) निजी तौर पर, कम से कम कूड़ा उत्पन्न करने के लिए हम क्या कर सकते हैं ? दो बिंद दीजिए।
 - (c) इस प्रसंग में शिक्षक महोदय ने जिन मूल्यों के विषय में छात्रों को शिक्षा दी उनमें से दो मूल्यों की सूची बनाइए।

Students in a school listened to the news read in the morning assembly that the mountain of garbage in Delhi, suddenly exploded and various vehicles got buried under it. Several people were also injured and there was traffic jam all around. In the brain storming session the teacher also discussed this issue and asked the students to find out a solution to the problem of garbage. Finally they arrived at two main points – one is self management of the garbage we produce and the second is to generate less garbage at individual level.

- (a) Suggest two measures to manage the garbage we produce.
- (b) As an individual, what can we do to generate the least garbage? Give two points.
- (c) List two values the teacher instilled in his students in this episode.
- 15. (a) िकसी चालक, जिसकी आकृति तार जैसी है, का प्रतिरोध जिन कारकों पर निर्भर करता है, उनकी सूची बनाइए।
 - (b) धातुएँ विद्युत की अच्छी चालक तथा काँच विद्युत का कुचालक क्यों होता है ? कारण दीजिए।
 - (c) विद्युत तापन युक्तियों में सामान्यतः मिश्रातुओं का उपयोग क्यों किया जाता है ? कारण दीजिए।
 - (a) List the factors on which the resistance of a conductor in the shape of a wire depends.
 - (b) Why are metals good conductors of electricity whereas glass is a bad conductor of electricity? Give reason.
 - (c) Why are alloys commonly used in electrical heating devices? Give reason.

31/2 7 [P.T.O.

31/2		8	
	(b)	How is copper extracted from its sulphide ore? Explain the various steps supported by chemical equations. Draw labelled diagram for the electrolytic refining of copper.	
	(a)	Write the steps involved in the extraction of pure metals in the middle of the activity series from their carbonate ores.	
	(0)	के विभिन्न चरणों की व्याख्या रासायनिक समीकरणों सहित कीजिए । कॉपर के विद्युत अपघटनी परिष्करण का नामांकित आरेख खींचिए ।	5
	(b)	कॉपर (तांबे) के सल्फाइड अयस्क से कॉपर का निष्कर्षण किस प्रकार किया जाता है ? निष्कर्षण	
18.	(a)	सिक्रयता श्रेणी के मध्य की धातु के कार्बोनेट अयस्कों से शुद्ध धातुओं के निष्कर्षण की विधि के चरणों को लिखिए।	
	(b)	Describe in brief the structure and function of placenta.	
		(i) Ovary (ii) Oviduct (iii) Uterus	
	(a)	Write the function of following parts in human female reproductive system:	
	(b)	प्लैसेन्टा की संरचना और कार्य का संक्षेप में वर्णन कीजिए।	5
		(i) अण्डाशय, (ii) अंडवाहिनी, (iii) गर्भाशय	
17.	(a)	मानव मादा जनन तंत्र के नीचे दिए गए प्रत्येक भाग का कार्य लिखिए :	
		(i) Armature (ii) Brushes (iii) Split ring	
	(c)	Explain the function of the following parts of an electric motor.	
	(b)	Write the principle of working of an electric motor.	
	(a)	State Fleming's left hand rule.	
		(i) आर्मेचर (ii) ब्रुश (iii) विभक्त वलय	5
	(c)	विद्युत मोटर के नीचे दिए गए भागों का कार्य लिखिए।	
	(b)	विद्युत मोटर का कार्यकारी सिद्धान्त लिखिए।	
16.	(a)	फ्लामगं का वाम हस्त ानयम ।लाखए ।	

- 19. (a) रुधिर के किन्हीं दो अवयवों का उल्लेख कीजिए।
 - (b) शरीर में ऑक्सीजन-प्रचुर रुधिर के गमन का पथ लिखिए।
 - (c) आलिन्द और निलय के बीच वाल्वों का कार्य लिखिए।
 - (d) धमनी और शिरा के संघटनों के बीच कोई एक संरचनात्मक अन्तर लिखिए।

- (a) उत्सर्जन की परिभाषा लिखिए।
- (b) वृक्क में उपस्थित आधारी निस्यंदन एकक का नाम लिखिए।
- (c) मानव के उत्सर्जन तंत्र का आरेख खींचिए और उस पर उत्सर्जन तंत्र के उस भाग का नामांकन कीजिए -
 - (i) जो मूत्र तैयार करता है।
 - (ii) जो लम्बी नलिका है और वृक्क से मूत्र संचित करती है।
 - (iii) जिसमें मूत्र त्यागने तक मूत्र भण्डारित रहता है।
- (a) Mention any two components of blood.
- (b) Trace the movement of oxygenated blood in the body.
- (c) Write the function of valves present in between atria and ventricles.
- (d) Write one structural difference between the composition of artery and veins.

OR

- (a) Define excretion.
- (b) Name the basic filtration unit present in the kidney.
- (c) Draw excretory system in human beings and label the following organs of excretory system which perform following functions:
 - (i) form urine.
 - (ii) is a long tube which collects urine from kidney.
 - (iii) store urine until it is passed out.
- 20. (a) आधुनिक आवर्त सारणी का विकास डॉबेराइनर, न्यूलैण्ड तथा मेण्डेलीफ के प्रारंभिक प्रयासों के कारण हो पाया है। इन तीनों प्रयासों की एक-एक उपलब्धि और एक-एक सीमा की सूची बनाइए।
 - (b) उस वैज्ञानिक का नाम लिखिए जिसने सर्वप्रथम यह दर्शाया कि किसी तत्त्व की परमाणु संख्या उसके परमाणु द्रव्यमान की तुलना में अधिक आधारभूत गुणधर्म है।
 - (c) आधुनिक आवर्त नियम लिखिए।
 - (a) The modern periodic table has been evolved through the early attempts of Dobereiner, Newland and Mendeleev. List one advantage and one limitation of all the three attempts.
 - (b) Name the scientist who first of all showed that atomic number of an element is a more fundamental property than its atomic mass.
 - (c) State Modern periodic law.

31/2 9 [P.T.O.

5

- 21. (a) कोई छात्र लगभग 3 m दूरी पर स्थित श्यामपट्ट पर लिखें अक्षरों को स्पष्ट नहीं देख पाता । यह छात्र जिस दृष्टि-दोष से पीड़ित है उसका नाम लिखिए । इस दोष के संभावित कारण लिखिए और इसके संशोधन की विधि की व्याख्या कीजिए ।
 - (b) तारें क्यों टिमटिमाते हैं ? व्याख्या कीजिए।

अथवा

- (a) मानव नेत्र के नीचे दिए गए प्रत्येक भाग का कार्य लिखिए:
 - (i) पुतली, (ii) परितारिका, (iii) क्रिस्टलीय लेंस, (iv) पक्ष्माभी पेशियाँ
- (b) प्रातःकाल सूर्य रक्ताभ क्यों प्रतीत होता है ? क्या कोई अंतरिक्षयात्री इस परिघटना का प्रेक्षण चन्द्रमा पर भी कर सकता है ? अपने उत्तर की पुष्टि के लिए कारण दीजिए।
- (a) A student is unable to see clearly the words written on the black board placed at a distance of approximately 3 m from him. Name the defect of vision the boy is suffering from. State the possible causes of this defect and explain the method of correcting it.
- (b) Why do stars twinkle? Explain.

OR

- (a) Write the function of each of the following parts of human eye:
 - (i) Cornea (ii) Iris (iii) Crystalline lens (iv) Ciliary muscles
- (b) Why does the sun appear reddish early in the morning? Will this phenomenon be observed by an astronaut on the Moon? Give reason to justify your answer.

31/2

भाग – ब

Section - B

अमीबा के जनन की प्रक्रिया का नाम लिखिए। इसके जनन की प्रक्रिया के विभिन्न चरणों को उचित क्रम
 में चित्रित कीजिए।

2

अथवा

कोई छात्र यीस्ट में मुकुलन द्वारा अलैंगिक जनन के विभिन्न चरणों की स्थायी स्लाइड का सूक्ष्मदर्शी द्वारा प्रेक्षण कर रहा है। वह स्लाइड में जो कुछ प्रेक्षण करता है उसे ओरख खींचकर (क्रमवार) दर्शाइए। Name the process by which an amoeba reproduces. Draw the various stages of its

OR

reproduction in a proper sequence.

A student is viewing under a microscope a permanent slide showing various stages of asexual reproduction by budding in yeast. Draw diagrams of what he observes. (in proper sequence)

23. 4.0 cm ऊँचाई का कोई बिम्ब 20 cm फोकस दूरी के किसी उत्तल लेंस के प्रकाशिक केन्द्र 'O' से 30 cm दूरी पर स्थित है। बनने वाले प्रतिबिम्ब की स्थिति और साइज़ ज्ञात करने के किरण आरेख खींचिए। इस आरेख में प्रकाशिक केन्द्र 'O' तथा मुख्य फोकस 'F' अंकित कीजिए। प्रतिबिम्ब की ऊँचाई और बिम्ब की ऊँचाई का लगभग अनुपात भी ज्ञात कीजिए।

2

An object of height 4.0 cm is placed at a distance of 30 cm from the optical centre 'O' of a convex lens of focal length 20 cm. Draw a ray diagram to find the position and size of the image formed. Mark optical centre 'O' and principal focus 'F' on the diagram. Also find the approximate ratio of size of the image to the size of the object.

24. किसी छात्र ने दो परखनिलयों A और B में लिए गए आयरन सल्फेट तथा कॉपर सल्फेट के जलीय विलयनों में ऐलुमिनियम धातु के कुछ टुकड़े डाले । प्रयोग के दूसरे भाग में उसने C और D परखनिलयों में क्रमशः लिए गए ऐलुमिनियम सल्फेट और कॉपर सल्फेट के जलीय विलयनों में आयरन धातु के टुकड़े डाले । किस अथवा किन परखनिलयों में उस छात्र को रंग में परिवर्तन दिखाई देगा ? इस प्रयोग के आधार पर उल्लेख कीजिए की कौन सी धातु सर्वाधिक अभिक्रियाशील है और क्यों ।

2

31/2

[P.T.O.

A student added few pieces of aluminium metal to two test tubes A and B containing aqueous solutions of iron sulphate and copper sulphate. In the second part of her experiment, she added iron metal to another test tubes C and D containing aqueous solutions of aluminium sulphate and copper sulphate.

In which test tube or test tubes will she observe colour change? On the basis of this experiment, state which one is the most reactive metal and why.

क्या प्रेक्षण किया जाता है जब किसी परखनली में लिए गए बेरियम क्लोराइड के विलियन में सोडियम 25. सल्फेट विलयन मिलाया जाता है ? सम्मिलित रासायनिक अभिक्रिया का रासायनिक समीकरण तथा इस प्रकरण में होने वाली अभिक्रिया के प्रकार का नाम लिखिए।

What is observed when a solution of sodium sulphate is added to a solution of barium chloride taken in a test tube? Write equation for the chemical reaction involved and name the type of reaction in this case.

किसी प्रतिरोधक, जिसका प्रतिरोध (R) है, से प्रवाहित विद्युत धारा (I) और उसके सिरों के बीच तदन्रूपी 26. विभवान्तर (V) के मान नीचे दिए गए अनुसार हैं :

V (वोल्ट)	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
I (एम्पियर)	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1.0

धारा (I) और विभवान्तर (V) के बीच ग्राफ खींचिए और प्रतिरोधक का प्रतिरोध (R) ज्ञात कीजिए।

The values of current (I) flowing through a given resistor of resistance (R), for the corresponding values of potential difference (V) across the resistor are as given below:

V (volts)	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
I (amperes)	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1.0

Plot a graph between current (I) and potential difference (V) and determine the resistance (R) of the resistor.

किसी पत्ती के छिलके में रंध्रों का प्रेक्षण करने के लिए अस्थायी आरोपण तैयार करने की प्रक्रिया के चरणों 27. की सूची बनाइए।

List the steps of preparation of temporary mount of a leaf peel to observe stomata.

12

CLICK HERE

mww.studentbro.in

2

English

Strictly Confidential- (For Internal and Restricted Use Only) Secondary School Examination **ANNUAL EXAMINATION** March 2018

Marking Scheme – Science (X) 31/2

- 1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. It carries only suggested value points for the answer. These are only guidelines and do not constitute the complete answer. Any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be 2. done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed.
- 3. If a question has parts, please award marks in the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin.
- 4. If a question does not have any parts, marks be awarded in the left-hand side margin.
- If a candidate has attempted an extra question, marks obtained in the question attempted first 5. should be retained and the other answer should be scored out.
- 6. Wherever only two/three of a 'given' number of examples/factors/points are expected only the first two/three or expected number should be read. The rest are irrelevant and should not be examined.
- 7. There should be no effort at 'moderation' of the marks by the evaluating teachers. The actual total marks obtained by the candidate may be of no concern of the evaluators.
- 8. All the Head Examiners / Examiners are instructed that while evaluating the answer scripts, if the answer is found to be totally incorrect, the (X) should be marked on the incorrect answer and awarded '0' marks.
- 9. ½ mark may be deducted if a candidate either does not write units or writes wrong units in the final answer of a numerical problem.
- 10. A full scale of mark 0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 11. As per orders of the Hon'ble Supreme Court the candidates would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points given in the marking scheme.

MARKING SCHEME OF SCIENCE (086) OF AISSE 2018

SET - 31/2

Max. Marks: 80

Q No	Value Points/ Expected Answers	Marks	Total
	SECTION – A		
1.	Potential /Kinetic/ Mechanical Energy into Electrical energy.	1	1
2.	Violet flowers	1	1
3.	(a) Due to ambiguity in the question award 1 mark whether attempted or not.	½ x 2	
	(b) a) Cell body/ cyton b) Axon	½ x 2	2
4.	Convex Mirror Labelled Ray diagram for any position of object M B	1 1/2	
	A M M P F C B At infinity N Note: If arrows not marked, ½ mark to be deducted.		2

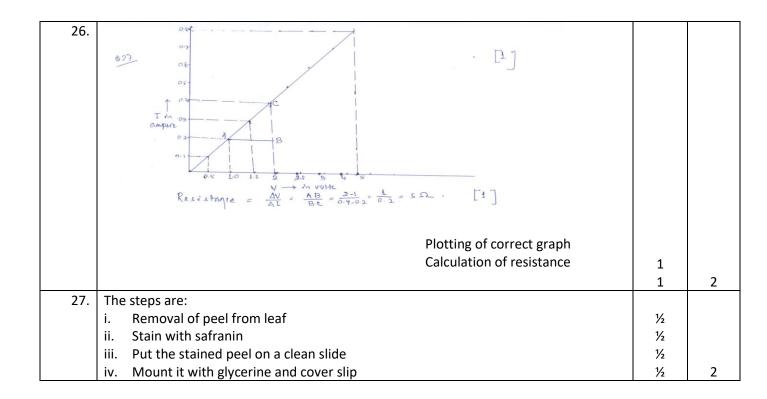
5.	• X-Ethanol/ (C ₂ H ₅ OH)/Ethyl Alcohol		
3.	• Y- Ethene / (C ₂ H ₄)		
	• Z- Hydrogen/ (H ₂)		
	(any two)	1/2 + 1/2	
	Conc H ₂ SO ₄		
	• CH_3 - CH_2 OH \longrightarrow CH_2 = CH_2 + H_2 O	1/2	
	Role of sulphuric acid —dehydrating agent	1/2	2
6.	1st law: the incident ray, refracted ray and normal to the interface at the point of	1	
	incidence lie in the same plane.		
	2^{nd} law: The sine of angle of incidence bears a constant ratio with sine of angle of	1	
	refraction for a given pair of media. Or $\frac{\sin i}{\sin r}$ = constant		
	Absolute Refractive Index of a medium = $\frac{\text{Speed of light in air or vacuum}}{\text{Speed of light in the medium}}$	1	
	(Award full marks if the same thing is given in the form of statement)		
	OR		
	Power of lens = Ability to converge/ diverge light rays passing through it/ reciprocal of		
	the focal length in metres $\frac{1}{f}(in \ meters)$	1/2	
	SI unit of power is Dioptre	1/2	
		1/2	
	Power of 1 st lens $P_1 = \frac{100}{f_1} = \frac{100}{40 \text{ cm}} = +2.5 \text{ D}$	1/2	
	Nature: Converging lens / Convex lens		
	Power of 2 nd lens $P_2 = \frac{100}{f^2} = \frac{100}{-20 \text{ cm}} = -5 \text{ D}$	1/2	
	Nature: Diverging lens / Concave Ins	1/2	3
7.	Any one of the following difference:	1	3
,.	(i) In sexual reproduction two opposite sexes are involved where as in asexual	_	
	reproduction only one individual is involved.		
	(ii) In sexual reproduction male and female gamete formation takes place where		
	as in asexual no gamete formation occurs.		
	 Sexually reproducing organisms have better chances of survival 	1	
	Because more variations are generated.	1	3
8.		1 ½	
	Two 9 ohm resistors in parallel		
	connected to one 9 ohms in		
	series 1 1 1 2		
	$\frac{1}{R_p} = \frac{1}{9} + \frac{1}{9} = \frac{2}{9}$ $\therefore R_p = \frac{9}{2}\Omega$		
	$ \wedge R_p = \frac{1}{2}\Omega$		
	$R = 9\Omega + \frac{9}{2}\Omega = 13.5\Omega$		
	$\int \frac{R-32z+\overline{2}^{3z}-13.32z}{2}$		
	<i>1</i>		

(ii)	Two 9 ohm resistors in series connected to one 9 ohms in parallel $R_s = 9\Omega + 9\Omega = 18\Omega \\ \frac{1}{R} = \frac{1}{18} + \frac{1}{9} = \frac{3}{18} \\ \therefore R = 6\Omega$ Note: Deduct ½ mark if calculations are not given.	1 1/2	
	OR Joule's law of heating – Heat produced in a resistor is (i) directly proportional to the square of current for a given resistance, (ii) directly proportional to the resistance for a given current and (iii) directly proportional to the time for which the current flows through the resistor / $H = I^2Rt$ where, $H = Heat$ produced, $I = current$, $R = Resistance$ of the conductor and $t = Time$ for which the current flows through the resistor ofte: If the candidate gives only the expression $H = I^2Rt$ award ½ mark only.	1	
(b)) Current in 1 st bulb, $I_1 = \frac{P1}{V} = \frac{100}{220} = \frac{5}{11}$ A or 0.45 A Current in 2 nd bulb, $I_2 = \frac{P2}{V} = \frac{60}{220} = \frac{3}{11}$ A or 0.27 A	1 1	3
b.	Thyroxine, regulates carbohydrate protein and fat metabolism/ controls metabolism for balance of body growth Growth hormone, regulates growth and development of body (or any other correct answer) Insulin, regulates/ decreases blood sugar level Or Glucagon, regulates / increases blood sugar	1/2 + 1/2 1/2 + 1/2 1/2 + 1/2	3
• '	Zn + 2NaOH \rightarrow Na ₂ ZnO ₂ + H ₂ When a burning splinter is brought near the gas, it burns with a Pop Sound. Gas – Hydrogen / H ₂	1 1 1	3
• Us For	res:	1 1	
So	ingredient of antacid. da-acid fire extinguishers (Any two) ote: As no salt can have pH = 14, give full credit for any attempt of the candidates.	1/2 + 1/2	3

11.	a) Carbon compounds form Covalent bonds/ do not dissociate into ions/ do not have	1	
	charged particles (ions) b) Cyclohexane	1	
		1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2	
	н н н н		
		1/2	
	Total No. of single bonds=18		
	(OR any other cycloalkane with corresponding number of bonds)		3
12.	heat		
	• CaCO ₃ — CaO + CO ₂		
	heat		
	$2FeSO_4 \longrightarrow Fe_2O_3 + SO_2 + SO_3 $ Any one	1	
	Pb(NO₃)₂		
	• 2AgCl sunlight 2Ag + Cl ₂		
	Sunlight Any one 2Ag + Br ₂	1	
	electricity • $2H_2O$ \longrightarrow $2H_2 + O_2$ (or any other equation for above decomposition reaction.)	1	
	Note: No marks to be deducted if equations are not balanced.		3
13.	1. Dam is a barrier that is built across a river or a stream for storage of water.	1/2	
	2. Large dam can ensure the storage of adequate water for irrigation and also for	1/2 + 1/2	
	generating electricity. 3. Social problem, economic problem and environmental problem	1 ½	3
14.	a. Incineration/ Waste compaction/ Biogas generation/ Composting/ Segregation	1 /2	<u> </u>
	and safe disposal/Vermicomposting (Any other) (any two)	1/2 + 1/2	
	b. Reuse of empty bottles, books etc.	1/2	
	Reduce the use of non-biodegradable substances like polythene, thermocol	1/2	
	etc. (Any other)		
	c. Awareness about environment, scientific attitude, Concern for community		
	health and personal health (Any two)	1/2, 1/2	3
			3

15.	a. Factors on which resistance of a conductor depends:		
	i. Length of conductor [or R $lpha$ ℓ]	1/2	
	ii. Area of cross-section of the conductor [or R $lpha$ 1/A]	1/2	
	b. Metals are good conductor of electricity –as they have low resistivity/ have	1/2	
	free electrons		
		1/2	
	Glass is a bad conductor of electricity – as it has high resistivity/have no free	/2	
	electrons		
	c. Reason:		
	Alloys have high resistivity /high melting point / alloys do not oxidize		
	(Or burn) readily at high temperatures.		
	(any one)	1	3
16.	Fleming's left-hand rule: stretch the forefinger, middle finger and thumb of left		
10.			
	hand in such a way that they are mutually perpendicular to each other. If the		
	forefinger point in the direction of magnetic field, middle finger point in the		
	direction of current then the thumb show the direction of force or motion on the		
	current carrying conductor.	1	
	• Principle of working of electric motor: A coil carrying electric current placed in an		
	external magnetic field experiences a force.	1	
	• <u>Function of armature</u> : Enhances the power of the motor/ induces motion.	1	
		-	
	• <u>Function of brushes</u> : Helps easy transfer of charge between the coil and the	1	
	external circuit.	1	
	• <u>Function of split rings</u> : Reverses the direction of current after each half rotation of		
	the coil so that the coil can keep rotating continuously.	1	5
17.	a. i) Ovary – releases egg/ female gamete/ ovum	1	
	releases oestrogen/ female hormones (any one)		
	ii) Oviduct- Transportation of ovum/ egg from ovary to the uterus/ Site of	1	
	fertilization		
	iii) <u>Uterus</u> – Development of embryo/ foetus	1	
	a) Placenta- It is a disc embedded in uterine wall which contains villi on the	1	
	,	_	
	embryo side of the tissue and blood space on mother side.		
	Function of placenta: Provides nourishment to embryo from mother's blood /	1	
	Removal of waste from embryo to mother's blood. (Any one)		5
18.	a. (i) Calcination (ii) Reduction (iii) Purification (in the given sequence only))	1 ½	
	b. Sulphide ore of copper is heated in air		
	$2Cu2S+3O2 \rightarrow 2Cu2O +2SO2$		
	$2Cu_2O+Cu_2S \rightarrow 6Cu + SO_2$	2	
	(Note: Full marks to be awarded even when only equations are written.)		
	c. Labelled diagram of electrolytic refining of copper		
	Key e		
	el		
	Cathode + Anode		
	Acidified		
	copper sulphate		
	Curan solution		
	—Tank		
	Impurities		
	(anode mud)	1½	5

19.	 a. Plasma, red blood cells, white blood cells, platelets b. Lungs → Left side of the heart → aorta → body organs 	½, ½ ½ x 4	
	 Note: Give weightage even if same thing is explained in the form of paragraph. c. Prevent back flow of blood d. Artery has thick elastic wall and vein is thin walled/ valves are present in the veins and not in arteries 	1 1	
	OR		
	 a. Process involved in removal of nitrogenous / harmful metabolic waste from the body. b. Nephron. c) Diagram of Human Excretory System: Labelling of the following parts 	1 1	
	i) kidney ii) ureter iii) urinary bladder		
	Ureter Urinary bladder	4.16	
	Drawing Labelling	1 ½ 1 ½	5
20.	Dobereiner Periodic Table	1/2	, ,
20.	Advantage: To predict the atomic mass of middle element in each triad Limitation: Dobereiner could identify only three triads	,2 . ,2	
	Newland Periodic table Advantage: Every eighth element had properties similar to that of first/ co-related the properties of elements with their atomic mass., Limitation: It was only applicable up to Calcium / only 56 elements and no future	1/2 + 1/2	
	element Mendeleev's Periodic Table	1/2 + 1/2	
	Advantage: Elements with similar properties could be grouped / He predicted the existence of new elements that had not been discovered at that time. Limitation: No fixed position for hydrogen/ position of isotopes/ Atomic masses do not increase in a regular manner.		
	Henry Moseley	1	
	Properties of elements are a periodic function of their atomic number	1	5



21.	a. <u>Defect of vision</u> – Myopia or short sightedness or near sightedness Causes of myopia: i) Excessive curvature of eye lens/eye lens becomes more	1	
	converging ii) Elongation of eye ball Methods of correction: By the use of concave lens of suitable power or focal	1/2 + 1/2	
	length the defect is corrected. / suitable diagrammatic representation.	1	
	 b. <u>Due to atmospheric refraction</u> The density of different layers of air keeps on changing due to which the apparent image of the stars keeps on changing. This changing position of stars appears as twinkling of stars. 	1	
	OR		
	 a. Function of: <u>Cornea</u>: focuses light rays / permits the light to enter the eye <u>Iris</u>: Controls amount of light entering the eye. / controls the size of pupil. <u>Crystalline Lens</u>: Converges light rays onto retina. <u>Cilliary Muscles</u>: Adjusts focal length of eye lens by contraction and relaxation so that sharp image can be obtained on the retina. / helps in accommodation 	½ x 4	
	 In early morning, sun light has to cover larger distance in the atmosphere. So, the shorter wavelengths scatter out. Only the longer wavelengths like red reach our eye. On moon – No 	1 ½	
	Cause: Moon has no atmosphere	½ 1	5
	SECTION – B		_
22.	Binary fission Diagram	1/2	
	OR	1 1/2	
			2

	Yeast cell Chain of buds Yeast cell		
23.	Position of O and F Ratio=hi/ho approximately 2:1	1 ½ ½	2
24.	In the test tube A, B, D she will observe colour change (No splitting of marks) Aluminum is the most reactive metal, because it displaces Iron, Zinc and Copper from	1	
	their aqueous salt solutions.	1/2 + 1/2	2
25.	White precipitate is observed $Na_2SO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$	1/2	
	Double displacement reaction	1/2	2

Hindi

अत्यंत गोपनीय – केवल आंतरिक एवं सीमित प्रयोग हेत्

सेकंडरी स्कूल परीक्षा

वार्षिक परीक्षा मार्च-2018

अंक योजना – विज्ञान कोड संख्या 31/2

सामान्य निर्देश:

- अंक योजना मुल्यांकन करने में व्यक्तिपरकता कम करने के लिए सामान्य मार्गदर्शन प्रदान करती है। इसमें प्रश्नों के उत्तर के लिए केवल सुझावात्मक मूल्य बिंदु दिए गए हैं, जो केवल मार्गदर्शन के लिए हैं। अंक योजना में दिए गए उत्तर किसी भी प्रकार से अंतिम एवं पूर्ण उत्तर नहीं हैं। प्रतिभागियों के उचित पृष्टिकरण करने वाले ऐसे अन्य उत्तरों को भी स्वीकार किया जाए जिनका कोई संदर्भ पाठ्यपुस्तक में नहीं है।
- मूल्यांकन अंक योजना में निर्दिष्ट निर्देशानुसार किया जाना है। यह मूल्यांकनकर्ता की अपनी निजी व्याख्या अथवा अन्य तर्कों के अनुसार नहीं किया जाना चाहिए। अंक योजना का पालन कर्तव्यनिष्ठा से कठोरतापूर्वक किया जाए।
- यदि प्रश्न के कई भाग हैं, तो कृपया प्रत्येक भाग के उत्तरों पर पृष्ठ के दाईं ओर अंक दें। बाद में प्रश्न के विभिन्न भागों के अंकों का योग पृष्ठ के बाईं ओर हाशिए पर लिखकर उसे गोलाकृत कर
- यदि प्रश्न का कोई भाग / उपभाग नहीं है, तो उस पर बाईं ओर ही अंक दिए जाएं। 4.
- यदि प्रतिभागी ने किसी अतिरिक्त प्रश्न का उत्तर भी लिख दिया है, तो पहले हल किए गए प्रश्न 5. को प्रदान किए गए अंकों को ही रहने दिया जाए तथा अन्य अतिरिक्त उत्तर को काट दिया जाए।
- जहाँ उत्तर में केवल कुछ दी गई संख्या में जैसे दो/तीन उदाहरण/कारक/बिंदू ही अपेक्षित हों वहाँ केवल पहले दो / तीन अथवा अपेक्षित संख्या में ही उदाहरण पढें जाएँ। शेष को अप्रासंगिक मानकर उनका परीक्षण न किया जाए।
- मूल्यांकनकर्ता द्वारा अंकों के 'मॉडरेशन' का कोई प्रयास नहीं किया जाए। प्रतिभागी द्वारा प्राप्त 7. वास्तविक अंकों से मूल्यांकनकर्ता को कोई संबंध नहीं रखना चाहिए।
- सभी मुख्य परीक्षकों / परीक्षकों को यह निर्देश दिया जाता है कि यदि उत्तर पुस्तिका का मूल्यांकन 8. करते समय किसी प्रश्न का उत्तर पूर्णतः गलत पाया जाता है, तो उस गलत उत्तर पर 'X' अंकित करके '0' अंक लिखा जाए।
- यदि संख्यात्मक प्रश्न के अंतिम उत्तर में प्रतिभागी कोई मात्रक नहीं लिखता अथवा गलत मात्रक लिखता है, तो ¼अंक काटा जाना चाहिए।
- मूल्यांकन में संपूर्ण अंक पैमाने (0 से 100) का प्रयोग अभीष्ट है, यदि उत्तर 100 अंक पाने योग्य है, 10. तों कृपया पूरे अंक देने में हिचकिचाहट मत कीजिए।
- माननीय उच्चतम न्यायालय की आज्ञानुसार अब प्रतिभागी को, निवेदन करके निर्धारित फीस का भुगतान करने पर अपनी उत्तर पुस्तिका की फोटो प्रतिलिपि प्राप्त करने की अनुमति प्राप्त हो सकेगी। सभी मुख्य परीक्षकों / परीक्षकों को यह पुनः स्मरण कराया जाता है कि यह सुनिश्चित कर लें कि मूल्यांकन का निष्पादन अंक योजना में दिए गए मूल्यांकन बिंदुओं का पूर्णतः पालन करते हए किया गया है।

कोड 31/2

		4/1	ड 31/2
प्रश्न संख्या	अपेक्षित उत्तर/मूल्यांकन बिन्दु	अंक	योग
	भाग — अ		
1.	स्थितिज / गतिज / यांत्रिक ऊर्जा का विद्युत ऊर्जा में	1	1
2.	बैंगनी पुष्प	1	1
3.	(a) प्रश्न में संदि्ग्धता (अस्पष्टता) होने के कारण प्रयास न किए जाने पर भी 1 अंक दिया जाए।	1	
	(b) (a) कोशिकाकाय (b) तंत्रिकाक्ष	1/2 + 1/2	2
4.	उत्तल दर्पण	1/2	
	बिम्ब की किसी भी स्थिति के लिए नामांकित किरण आरेख		
	M M		
	B P B F C		
	N N		
	अथवा _м		
	F C		
	अनन्त पर N		
	(नोटः तीरों को सही अंकित न करने पर ½ अंक काटा जाए)	1½	2
5.	X – एथेनॉल / C₂H₅OH / इथाइल एल्कोहॉल		
	एथीन ∕ С₂Н₄		
	हाइड्रोजन $/ H_2$ (कोई दो)	1/2 + 1/2	
	$CH_3-CH_2OH \xrightarrow{\text{dig}} H_2SO_4 CH_2 = CH_2 + H_2O$	1/2	
	सल्पयुरिक अम्ल की भूमिका – निर्जलीकर्मक	1/2	2
6.	अपवर्तन के नियम		
	पहला नियम : आपतित किरण, अपवर्तित किरण तथा दोनों माध्यमों को पृथक करने वाले पृष्ठ के आपतन बिन्दु पर अभिलम्ब सभी एक तल में होते हैं।	1	
	<u>दूसरा नियम :</u> निश्चित माध्यमों के युग्म के लिए आपतन कोण की ज्या तथा अपवर्तन कोण	1	
	की ज्या का अनुपात नियत (स्थिर) होता है।	_	

		7/1	9 31/2
	अथवा ज्या i / ज्या r = नियतांक (स्थिरांक)		
	किसी माध्यम का निरपेक्ष अपवर्तनांक = वायु में प्रकाश की चाल माध्यम में प्रकाश की चाल	1	3
	(इसी को कथन के रूप में लिखे जाने पर पूरे अंक दिए जाएं) अथवा		
	• <u>लेंस की शक्ति</u> : लेंस से गुजरने वाली प्रकाश किरणों को अभिसरित / अपसरित करने की क्षमता / लेंस की मीटरों में फोकस दूरी (f) का व्युत्क्रम / 1 / f (मीटरों में)	1/2	
	• लेंस की शक्ति का SI मात्रक — डाइऑप्टर	1/2	
	 पहले लेंस की शक्ति P₁ = \frac{100}{f1} = \frac{100}{40 \text{ cm}} = +2.5D प्रकृति : अभिसारी लेंस (उत्तल लेंस) 	1/2	
	• दूसरे लेंस की शक्ति $P_2 = \frac{100}{f2} = \frac{100}{-20 \text{ cm}} = -5D$ प्रकृति : अपसारी लेंस (अवतल लेंस)	1/2	
7.	नीचे दिए गए अंतरों में से कोई एक		
	(i) लैंगिक जनन में दो विपरीत लिंग योगदान करते हैं जबकि अलैंगिक जनन में लिंगों का योगदान नहीं होता।	1	
	(ii) लैंगिक जनन में नर और मादा युग्मक बनते हैं, जबिक अलैंगिक जनन में युग्मक नहीं बनते।	1	
	विभिन्नताएं उत्पन्न होने के कारण लैंगिक जनन करने वाले जीवों की उत्तरजीविता के अपेक्षाकृत अधिक संयोग होते हैं।	1+1	3
8.	(i) 9Ω 9Ω 9Ω 9Ω 9Ω 9Ω 9Ω 9Ω		
	$R = 9\Omega + 4.5\Omega = 13.5\Omega$	1/2	
	(ii) 9Ω 9Ω 9Ω $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$ $\%$		
	$R_s = 9\Omega + 9\Omega = 18\Omega$		
	$\frac{1}{R} = \frac{1}{18} + \frac{1}{9} = \frac{3}{18} \Rightarrow R = 6 \Omega$ (नोट : परिकलन नहीं दिए जाने पर ½ अंक काटा जाए)	1½	3
	(गाट - पारपरेशम मेरा पिड्र जाम पर /2 जाम प्राटी जाए)		

		9/1	ਤ 31 / 2
	अथवा		
	(a) जूल का तापन नियम : किसी प्रतिरोधक में उत्पन्न होने वाली ऊष्मा (i) दिए गए प्रतिरोधक में प्रवाहित होने वाली विद्युत धारा के वर्ग के व्युत्क्रमानुपाती, (ii) दी गयी विद्युत धारा के लिए प्रतिरोध के अनुक्रमानुपाती तथा (iii) उस समय के अनुक्रमानुपाती होती है जिसके लिए दिए गए प्रतिरोध में विद्युतधारा प्रवाहित होती है।	1	
	(यदि केवल व्यंजक H=I ² Rt दिया गया है तो ½ अंक दिया जाए।)		
	(b) पहले बल्ब में विद्युतधारा, $I_1 = \frac{P_1}{V} = \frac{100W}{220V} = \frac{5}{11}$ A अथवा 0.45 A	1	
	दूसरे बल्ब में विद्युतधारा, $I_2 = \frac{P_2}{V} = \frac{60W}{220V} = \frac{3}{11}$ A अथवा 0.27 A	1	3
9.	(a) <u>थॉयरॉक्सिन</u> : कार्बोहाइड्रेट, प्रोटीन तथा वसा के उपापचय को नियमित / उपापचय	1/2 + 1/2	
	को नियंत्रित करके हमारे शरीर की वृद्धि का संतुलन करता है। (b) <u>वृद्धि हॉर्मोन</u> : शरीर की वृद्धि और विकास को नियंत्रित करता है	1/2 + 1/2	
	(अथवा अन्य कोई सही उत्तर)		
	(c) <u>इन्सुलिन :</u> रुधिर में शर्करा के स्तर को नियंत्रित (अथवा कम) करता है। अथवा		
	<u>ग्लुकागॉन</u> : रुधिर में शर्करा के स्तर को नियंत्रित (अथवा अधिक) करता है।	1/2 + 1/2	3
10.	• $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$	1	
	• गैस के निकट जलती तीली लाने पर गैस पॉप ध्विन के साथ जलती है।	1	
	• गैस — हाइड्रोजन ∕ H₂	1	3
	अथवा		
	 NaHCO₃ / सोडियम हाइड्रोजन कार्बोनेट / सोडियम बाइकार्बोनेट 	1	
	 NaCl + H₂O+CO₂ + NH₃ → NH₄Cl+NaHCO₃ 	1	
	उपयोग :		
	• बेकिंग पाउडर बनाने में		
	• प्रतिअम्ल के अवयव / अंश के रूप में		
	• सोडा अम्ल अग्निशामक यंत्रों में	1/2 + 1/2	3
	(नोट : चूंकि किसी भी लवण का pH मान 14 नहीं हो सकता, अतः उत्तर में कुछ भी लिखा होने पर पूरे अंक दिए जाएं)		
11.	(a) कार्बन—यौगिक सहसंयोजी आबंधों से बनते हैं / आयनों में वियोजित नहीं होते / इनमें आवेशित कण (आयन) नहीं होते।	1	

			0 31/2
	(b) साइक्लोहेक्सेन	1	
	H H H H H C — C H H H H H	1/2	
	एकल आबन्धों की कुल संख्या = 18	1/2	3
	(अथवा किसी भी साइक्लोएल्केन का नाम, उसकी संरचना ओर तदनरूपी एकल आबन्धों की कुल संख्या दिए जाने पर निर्धारित अंक दिए जाएं।		
12.	• $CaCO_3$ $\xrightarrow{\begin{subarray}{c} \begin{subarray}{c} sub$		
	$2\text{FeSO}_4 \xrightarrow{\text{GOM}} \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{SO}_3$ (कोई एक) $2\text{Pb}(\text{NO}_3)_2 \xrightarrow{\text{GOM}} \text{2PbO} + 4\text{NO}_2 + \text{O}_2$	1	
	 • 2AgCl	1	
	• 2H ₂ O	1	3
	अथवा उपरोक्त अभिक्रियाओं के लिए अन्य कोई समीकरण (नोटः यदि समीकरण संतुलित नहीं है, तो भी अंक नहीं काटे जाएं)		
13.	1. <u>बांध</u> : बांध किसी नदी अथवा धारा प्रवाह के आर—पार एक ऐसा अवरोध होता है जिसका निर्माण जल संग्रहण (भण्डारण) के लिए किया जाता है।	1/2	
	2. बड़े बांधों का निर्माण सिंचाई एवं विद्युत उत्पादन के लिए भी पर्याप्त जल के भण्डारण को सुनिश्चित करता है।	1/2+1/2	
	3. सामाजिक समस्याएं, आर्थिक समस्याएं एवं पर्यावरणीय समस्याएं	1½	3
14.	(a) कूड़ा प्रबन्धन के उपाय :		
	भस्मीकरण/अपशिष्ट सघनीकरण/बायोगैस उत्पन्न करना/कम्पोस्ट खाद बनाना/ पृथक्करण और निरापद निपटारा/वर्मीकम्पोस्टिंग		
	(कोई अन्य)	1/ . 1/	
	(कोई दो) (b) खानी बोतनों प्रस्तकों आदि का पनः न्यायोग	½+½ ½	
	(b) खाली बोतलों, पुस्तकों आदि का पुनः उपयोग पॉलीथीन, थर्मोकॉल आदि जैसे अजैव—निम्नीकरणीय पदार्थों के उपयोग में कमी	1/2	
	(कोई अन्य)		
	(c) पर्यावरण के विषय में जागरुकता, वैज्ञानिक दृष्टिकोण, सामाजिक एवं व्यक्तिगत स्वास्थ्य के विषय में चिन्ता (दिलचस्पी)		
	(कोई दो)	1/2+1/2	3

 (a) वह कारक जिन पर किसी चालक का प्रतिरोध निर्भर करता है: (i) चालक की लम्बाई (अथवा Rαℓ) (ii) चालक की लम्बाई (अथवा Rαℓ) (b) धातुएं विद्युत की अच्छी चालक होती हैं— चूंकि उनकी प्रतिरोधकता निम्न (अल्प) होती है / चूंकि इनमें मुक्त इलेक्ट्रॉन होते हैं। कांच विद्युत का कुचालक है — चूंकि इसकी प्रतिरोधकता उच्च होती है / चूंकि इसमें मुक्त इलेक्ट्रॉन नहीं होते हैं। (c) कारण: मिश्रातुओं की प्रतिरोधकता उच्च होती है / के गलनांक उच्च होते हैं / मिश्रातु उच्च ताप पर तुरन्त (सहज ही) उपचियत (ऑक्सीकृत) नहीं होते / जलते। (कोई एक) 16. (a) फ्लेमिंग का वामहस्त नियम: अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की 	, , , , , , , , , , , , , , , , , , ,
(ii) चालक की अनुप्रस्थ काट का क्षेत्रफल (अथवा Rα1/A) (b) धातुएं विद्युत की अच्छी चालक होती हैं— चूंकि उनकी प्रतिरोधकता निम्न (अल्प) होती हैं / चूंकि इनमें मुक्त इलेक्ट्रॉन होते हैं। कांच विद्युत का कुचालक है — चूंकि इसकी प्रतिरोधकता उच्च होती है / चूंकि इसमें मुक्त इलेक्ट्रॉन नहीं होते हैं। (c) कारण : मिश्रातुओं की प्रतिरोधकता उच्च होती है / के गलनांक उच्च होते हैं / मिश्रातु उच्च ताप पर तुरन्त (सहज ही) उपचियत (ऑक्सीकृत) नहीं होते / जलते। (कोई एक) 16. (a) फ्लेमिंग का वामहस्त नियम : अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	, , , , , , , , , , , , , , , , , , ,
(b) धातुएं विद्युत की अच्छी चालक होती हैं— चूंकि उनकी प्रतिरोधकता निम्न (अल्प) होती है / चूंकि इनमें मुक्त इलेक्ट्रॉन होते हैं । कांच विद्युत का कुचालक है — चूंकि इसकी प्रतिरोधकता उच्च होती है / चूंकि इसमें मुक्त इलेक्ट्रॉन नहीं होते हैं । (c) कारण : मिश्रातुओं की प्रतिरोधकता उच्च होती है / के गलनांक उच्च होते हैं / मिश्रातु उच्च ताप पर तुरन्त (सहज ही) उपचयित (ऑक्सीकृत) नहीं होते / जलते । (कोई एक) 16. (a) फ्लेमिंग का वामहस्त नियम : अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों । यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूढा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	, , , , , , , , , , , , , , , , , , ,
है / चूंकि इनमें मुक्त इलेक्ट्रॉन होते हैं। कांच विद्युत का कुचालक है — चूंकि इसकी प्रतिरोधकता उच्च होती है / चूंकि इसमें मुक्त इलेक्ट्रॉन नहीं होते हैं। (c) कारण: मिश्रातुओं की प्रतिरोधकता उच्च होती है / के गलनांक उच्च होते हैं / मिश्रातु उच्च ताप पर तुरन्त (सहज ही) उपचयित (ऑक्सीकृत) नहीं होते / जलते। (कोई एक) 16. (a) फ्लेमिंग का वामहस्त नियम: अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	
मुक्त इलेक्ट्रॉन नहीं होते हैं। (c) कारण: मिश्रातुओं की प्रतिरोधकता उच्च होती है / के गलनांक उच्च होते हैं / मिश्रातु उच्च ताप पर तुरन्त (सहज ही) उपचयित (ऑक्सीकृत) नहीं होते / जलते। (कोई एक) 16. (a) फ्लेमिंग का वामहस्त नियम: अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	ź
उच्च ताप पर तुरन्त (सहज ही) उपचयित (ऑक्सीकृत) नहीं होते / जलते। (कोई एक) 16. (a) फ्लेमिंग का वामहस्त नियम : अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	
16. (a) फ्लेमिंग का वामहस्त नियम : अपने बाएं हाथ की तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	
प्रकार फैलाइए कि ये तीनों एक दूसरे के परस्पर लम्बवत हों। यदि तर्जनी चुम्बकीय क्षेत्र की दिशा तथा मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की	. 3
दिशा की ओर संकेत करेगा।	L
(b) विद्युत मोटर की क्रियाविधि का सिद्धान्त : किसी बाह्य चुम्बकीय क्षेत्र में स्थित कोई विद्युतवाही चालक (कुण्डली) बल का अनुभव करता है।	
(c) (i) आर्मेचर का कार्य : मोटर की शक्ति में वृद्धि करना / गति को प्रेरित करना। 1	
(ii) ब्रुश का कार्य : कुण्डली और बाह्य परिपथ के बीच आवेश के स्थानान्तरण में सहायता करना।	-
(iii) विभक्त वलय का कार्य : प्रत्येक आधे घूर्णन के पश्चात विद्युत धारा के उत्क्रमित होने के क्रम को दोहराना जिसके कारण कुण्डली निरन्तर घूर्णन करती है।	5
17. (a) (i) अण्डाशय — अण्ड / मादा युग्मक / अण्डाणु / डिम्ब विमोचन	
(ii) अण्डवाहिका — अण्डाणु / डिम्ब / मादा युग्मक का अण्डाशय से गर्भाशय तक वहन / निषेचन का स्थल	
(iii) गर्भाशय — भ्रूण का विकास	.
(b) <u>प्लैसेन्टा</u> : यह एक तश्तरीनुमा संरचना है जो गर्भाशय की भित्ति में धंसी होती है। इसमें भ्रूण की ओर के ऊतक में प्रवर्ध होते हैं।	
प्लैसेन्टा का कार्य : माता के रुधिर से भ्रूण को पोषण प्रदान करना / भ्रूण द्वारा जनित	
अपशिष्ट पदार्थों का माँ के रुधिर में स्थानान्तरण। (कोई एक) 1	. 5
18. (a) (i) निस्तापन (ii) अपचयन (iii) परिष्करण (केवल दिए गए क्रम में) 13	/2
(b) कॉपर के सल्फाइड अयस्क को वायु में गर्म किया जाता है।	
$2Cu2S+3O2 \rightarrow 2Cu2O + SO2$ $2Cu2O+Cu2S \rightarrow 6Cu + SO2$	
(केवल समीकरण लिखे जाने पर ही पूर्ण अंक दिए जाएं।)	i l

(c) कॉपर के विद्युत अपघटनी परिष्करण का नामांकित आरंख : ब्रिंधी किया किया के प्रमुख (एनोड की प्रमुख की प्रमुख (एनोड की प्रमुख की				0 31/2
19. (a) प्लैज़्मा, लाल रुधिर कोशिकाएं, श्वेत रुधिर कोशिकाएं, प्लेटलैट्स (कोई दो) ½+½ (b) फुफ्फुस → हृदय में बाएं स्थित कोष्ठ → महाधमनी → शरीर के भाग (तोट : यदि इसी की व्याख्या पैराग्राफ के रूप में की गयी है तो पूरे अंक दिए जाएं) (c) वाल्व उल्टी दिशा में रुधिर—प्रवाह को रोकते हैं। (d) धमनी की मिति मोटी एवं लवीली होती है जबिक शिराएं पतली मित्ति की होती हैं / शिराओं में वाल्व होते हैं, धमनियों में वाल्व नहीं होते। अथवा (a) शरीर से उपापचय क्रियाओं में जनित नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) (c) मानव उत्सर्जन तंत्र का आरेख		(c) कॉपर के विद्युत अपघटनी परिष्करण का नामांकित आरेख :		
(b) फुफ्फुस → हृदय में बाएं स्थित कोष्ठ → महाधमनी → शरीर के भाग (नोट: यदि इसी की व्याख्या पैराग्राफ के रूप में की गयी है तो पूरे अंक दिए जाएं) (c) वाल्व उल्टी दिशा में रुधिर—प्रवाह को रोकते हैं। (d) धमनी की भित्ति मोटी एवं लचीली होती है जबिक शिराएं पतली भित्ति की होती हैं ∕ शिराओं में वाल्व होते हैं, धमनियों में वाल्व नहीं होते। अथवा (a) शरीर से उपापचय क्रियाओं में जनित नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) 1 (c) मानव उत्सर्जन तंत्र का आरेख		कैथोड - एनोड अम्लीकृत कॉपर सल्फेट विलयन टैंक अपद्रव्य		
(नोट : यदि इसी की व्याख्या पैराग्राफ के रूप में की गयी है तो पूरे अंक दिए जाएं) (c) वाल्व उल्टी दिशा में रुधिर—प्रवाह को रोकते हैं। (d) धमनी की भित्ति मोटी एवं लचीली होती है जबिक शिराएं पतली भित्ति की होती हैं / शिराओं में वाल्व होते हैं, धमनियों में वाल्व नहीं होते। अथवा (a) शरीर से उपापचय क्रियाओं में जनित नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) (c) मानव उत्सर्जन तंत्र का आरेख	19.	(a) प्लैज़्मा, लाल रुधिर कोशिकाएं, श्वेत रुधिर कोशिकाएं, प्लेटलैट्स (कोई दो)	1/2+1/2	
(c) वाल्व उल्टी दिशा में रुधिर—प्रवाह को रोकते हैं। (d) धमनी की भित्ति मोटी एवं लचीली होती है जबिक शिराएं पतली भित्ति की होती हैं / शिराओं में वाल्व होते हैं, धमनियों में वाल्व नहीं होते। अथवा (a) शरीर से उपापचय क्रियाओं में जनित नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) 1 (c) मानव उत्सर्जन तंत्र का आरेख			½ x 4	
(c) वाल्व उल्टी दिशा में रुधिर—प्रवाह का रोकत है। (d) धमनी की भित्ति मोटी एवं लचीली होती है जबिक शिराएं पतली भित्ति की होती हैं / शिराओं में वाल्व होते हैं, धमनियों में वाल्व नहीं होते। अथवा (a) शरीर से उपापचय क्रियाओं में जनित नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) 1 (c) मानव उत्सर्जन तंत्र का आरेख		(नोट : यदि इसी की व्याख्या पैराग्राफ के रूप में की गयी है तो पूरे अंक दिए जाएं)		
(d) धमनी की भित्ति मोटी एवं लचीली होती है जबकि शिराएं पतली भित्ति की होती हैं / शिराओं में वाल्व होते हैं, धमनियों में वाल्व नहीं होते। अथवा (a) शरीर से उपापचय क्रियाओं में जनित नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) 1 (c) मानव उत्सर्जन तंत्र का आरेख		(c) वाल्व उल्टी दिशा में रुधिर—प्रवाह को रोकते हैं।		
(a) शरीर से उपापचय क्रियाओं में जिनत नाइट्रोजन युक्त हानिकर पदार्थों को निकालने की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) (c) मानव उत्सर्जन तंत्र का आरेख			1	5
की प्रक्रिया। (b) वृक्काणु (नेफ्रॉन) 1 (c) मानव उत्सर्जन तंत्र का आरेख		अथवा		
(c) मानव उत्सर्जन तंत्र का आरेख		· · · · · · · · · · · · · · · · · · ·	1	
		(b) वृक्काणु (नेफ्रॉन)	1	
वृषक		(c) मानव उत्सर्जन तंत्र का आरेख	1	
मूत्रवाहिनी नामांकन 1½ 5 मूत्राशय		मूत्रवाहिनी नामांकन		5
20. डॉबेराइनर की आवर्त सारणी (त्रिक)	20.	डॉबेराइनर की आवर्त सारणी (त्रिक)		
<u>उपलिक्ष</u> ि : प्रत्येक त्रिक में मध्य के तत्व के परमाणु द्रव्यमान की भविष्यवाणी ½		उपलक्षि : प्रत्येक त्रिक में मध्य के तत्व के परमाणु द्रव्यमान की भविष्यवाणी	1/2	
<u>सीमा</u> : डॉबेराइनर केवल तीन त्रिक ही ज्ञात कर सके। ½		<u>सीमा</u> : डॉबेराइनर केवल तीन त्रिक ही ज्ञात कर सके।	1/2	

			•
	न्यूलैंड्स की आवर्त सारणी (अष्टक सिद्धान्त)		
	उपलिख्धः प्रत्येक आठवें तत्व के गुणधर्म पहले तत्व के समान थे / तत्वों के गुणधर्मों का उनके परमाणु द्रव्यमानों के साथ सम्बन्ध स्थापित किया।	1/2	
	सीमा : यह सिद्धान्त केवल कैल्सियम तक ही लागू हो पाया / कल्पना के अनुसार प्रकृति में केवल 56 तत्व विद्यमान हैं तथा भविष्य में कोई अन्य तत्व नहीं मिलेगा।	1/2	
	मेन्डेलीफ की आवर्त सारणी :		
	<u>उपलिक्</u> ध : समान गुणधर्मों वाले तत्वों का समूहीकरण किया जा सका / इन्होंने ऐसे तत्वों की उत्तरजीविता / उपस्थिति की भविष्यवाणी की जिन्हें उस समय तक खोजा नहीं जा सका था।	1/2	
	सीमा : हाइड्रोजन के लिए कोई निश्चित स्थान न होना / समस्थानिकों की स्थिति / परमाणु द्रव्यमानों में अनियमित रूप से वृद्धि होना।	1/2	
	• हेनरी मोज्ले	1	
	• ''तत्वों के गुणधर्म उनकी परमाणु संख्या का आवर्त फलन होते हैं।''	1	5
21.	(a) <u>नेत्र का दृष्टिदोष</u> : निकट दृष्टि दोष / निकटदृष्टिता	1	
	निकट दृष्टिदोष के कारण :		
	(i) अभिनेत्र लेंस की वक्रता का अत्यधिक होना / अभिनेत्र लेंस का अधिक अभिसारी होना।	1/2	
	(ii) नेत्र गोलक का दीर्घीकृत होना	1/2	
	संशोधन की विधि : उपयुक्त क्षमता / फोकस दूरी के लेंस के उपयोग से इस दोष का		
	संशोधन किया जाता है / उपयुक्त आरेखों द्वारा निरूपण।	1	
	(b) वायुमण्डलीय अपवर्तन के द्वारा	1	
	वायुमण्डल में वायु की विभिन्न पर्तों के घनत्व में परिवर्तन होता रहता है जिसके कारण तारों के आभासी प्रतिबिम्बों की स्थितियां परिवर्तित होती हैं। तारों की यही परिवर्तित स्थितियां तारों का टिमटिमाना दर्शाती हैं।	1	5
	अथवा		
	(a) (i) पुतली (कॉर्निया) का कार्य : प्रकाश किरणों का फोकसन / नेत्र में प्रकाश किरणों का प्रवेश होने देना		
	(ii) परितारिका का कार्य : नेत्र में प्रवेश करने वाले प्रकाश के परिमाण को नियंत्रित करना / पुतली के साइज़ को नियंत्रित करना।		
	(iii) क्रिस्टलीय लेंस का कार्य : दृष्टिपटल (रेटीना) पर प्रकाश किरणों को फोकसित (अभिसरित) करना		
	(iv) पक्ष्माभी पेशियों का कार्य : शिथिल अथवा सिकुड़कर अभिनेत्र लेंस की फोकस दूरी को समायोजित करके दृष्टिपटल पर बिम्बों के स्पष्ट एवं तीक्ष्ण प्रतिबिम्ब बनाने में सहायता करना / समंजन क्षमता में सहायता करना।	½ x 4	
	(b) प्रातःकाल में सूर्य के प्रकाश को वायुमण्डल में अधिक दूरी तय करनी होती है। अतः लघु तरंगदैर्घ्य प्रकीर्णित हो जाती हैं। केवल दीर्घ तरंगदैर्घ्य (लाल वर्ण की) हमारे नेत्रों तक पहुंचती हैं।	1½	
	चन्द्रमा पर अन्तरिक्ष यात्री इस परिघटना का प्रेक्षण नहीं कर सकता।	1/2	
	कारण : चन्द्रमा पर कोई वायुमण्डल नहीं है।	1	5

			ड 31 / 2
	भाग — ब		
22.	• द्विखण्डन / अलैंगिक जनन	1/2	
	• आरेख		
	अथवा	1½	2
	विकसित होता मुकुल नया मुकुलों की श्रृंखला यीस्ट कोशिका		
	9 10 10	2	2
23.	किरण आरेख	1½	
	4 cm F ₂ 30 cm 8 cm		
	O और F की स्थितियां	½ 1/2	2
	अनुपात = h ₁ /h ₀ लगभग 2:1	1/2	2
24.	• परखनलियों A, B, और D में रंग परिवर्तन दिखाई देंगे।	1	
	(अंकों को नहीं बांटना है।)		
	• एल्युमीनियम सर्वाधिक अभिक्रियाशील धातु	1/2	
	 क्योंकि यह जिंक, आयरन और कॉपर को उनके जलीय विलयनों से विस्थापित कर देता है। 	1/2	2

25. • सफंत अवशेष का प्रेक्षण • Na ₂ SO ₄ (जिलीय) + BaCl ₂ (जिलीय) → BaSO ₄ (ठोस) + 2NaCl (जिलीय) • द्विविस्थापन अभिक्रिया 26. ग्राफ \[\begin{align*}			4713	5 31/2
• द्विविस्थापन अमिक्रिया $\frac{1}{2}$ 2 26. ग्राफ $\frac{1}{1}$ (एम्पियर में) $\frac{08}{07}$ $\frac{06}{05}$ $\frac{05}{05}$ $\frac{1}{0.5}$ $$	25.	• सफेद अवक्षेप का प्रेक्षण	1/2	
26. ग्राफ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		 Na₂SO₄ (जलीय) + BaCl₂ (जलीय) → BaSO₄ (ठोस) + 2NaCl (जलीय) 	1	
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		• द्विविस्थापन अभिक्रिया	1/2	2
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$				
ा (एम्पियर में) $\frac{1}{02}$ $\frac{\Delta V}{01} = \frac{AB}{BC} = \frac{(2-1)V}{(0.4-0.2)A} = \frac{1V}{0.2A} = 5\Omega$ प्राफ खींचना प्रतिरोध का परिकलन $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{$	26.			
प्रितरोध = $\frac{\Delta V}{\Delta I} = \frac{AB}{BC} = \frac{(2-1)V}{(0.4-0.2)A} = \frac{1V}{0.2A} = 5\Omega$ प्राफ खींचना प्रतिरोध का परिकलन 1 2 27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ii. सेफ्रेनिन द्वारा वर्णित करना। iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना		/ i		
्राफ खींचना प्रतिरोध का परिकलन 1 2 27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ii. सैफ्रेनिन द्वारा वर्णित करना। iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना		l i		
ा (शस्पयर म) $\frac{1}{02}$ $\frac{1}{01}$ $\frac{1}{0.5}$ $\frac{1}{0.2A}$ $\frac{1}{0.$!		
$\begin{array}{c} V \text{ (वोल्ट में)} & \to \\ & \text{प्रतिरोध} = \frac{\Delta V}{\Delta I} = \frac{AB}{BC} = \frac{(2-1)V}{(0.4-0.2)A} = \frac{1V}{0.2A} = 5\Omega \\ & \text{प्राफ खींचना} \\ & \text{प्रतिरोध का परिकलन} \end{array} \qquad \begin{array}{c} 1 \\ 1 \\ 2 \\ \end{array}$		1 (VI+44X H) , / j I		
$V\left(\bar{q}\right) \stackrel{V}{=} \frac{1}{\Delta V} \rightarrow V\left(\bar{q}\right) \stackrel{V}{=} \frac{AB}{BC} = \frac{(2-1)V}{(0.4-0.2)A} = \frac{1V}{0.2A} = 5\Omega$ $\begin{array}{c} I \\ I \\ I \\ I \end{array}$ $\begin{array}{c} I $		/ B		
प्रतिरोध = $\frac{\Delta V}{\Delta I}$ = $\frac{AB}{BC}$ = $\frac{(2-1)V}{(0.4-0.2)A}$ = $\frac{1V}{0.2A}$ = 5Ω ग्राफ खींचना प्रतिरोध का परिकलन 27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ii. सैफ्रोनिन द्वारा वर्णित करना। iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना		0.5 1.0 1.5 2 2.5 3 4 5		
प्रतिरोध = $\frac{\Delta V}{\Delta I}$ = $\frac{AB}{BC}$ = $\frac{(2-1)V}{(0.4-0.2)A}$ = $\frac{1V}{0.2A}$ = 5Ω ग्राफ खींचना प्रतिरोध का परिकलन 27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ii. सैफ्रोनिन द्वारा वर्णित करना। iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना		V (वोल्ट में) →		
ग्राफ खींचना प्रतिरोध का परिकलन 1 2 27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ii. सैफ्रेनिन द्वारा वर्णित करना। iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना				
प्रतिरोध का परिकलन 1 2 27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ½ ii. सैफ्रेनिन द्वारा वर्णित करना। ½ iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना		Δ I BC (0.4 – 0.2) A 0.2A		
27. चार चरण इस प्रकार है— i. झिल्ली को पत्ती से हटाना (निकालना) ii. सैफ्रेनिन द्वारा वर्णित करना। iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना				
i. झिल्ली को पत्ती से हटाना (निकालना) ½ ii. सैफ्रेनिन द्वारा वर्णित करना। ½ iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना ½		प्रतिरोध का परिकलन		2
ii. सैफ्रेनिन द्वारा वर्णित करना। ½ iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना ½	27.	चार चरण इस प्रकार है–		
iii. वर्णित झिल्ली को स्वच्छ स्लाइड पर रखना		i. झिल्ली को पत्ती से हटाना (निकालना)	1/2	
III. 41 IXI IZIXXII 47 X4-5 XXIIQS IX XG II		ii. सैफ्रेनिन द्वारा वर्णित करना।	1/2	
iv. ग्लिसरीन द्वारा झिल्ली को आरोपित करना और कवर स्लिप लगाना 1/2 2			1/2	
		iv. ग्लिसरीन द्वारा झिल्ली को आरोपित करना और कवर स्लिप लगाना	1/2	2

